SUPERSONIC VISCOUS GAS FLOW AROUND
A COOLED SPHERICAL BLUNT BODY

Yu. P, Golovachev and F. D, Popov UDC 533.6.011.55:533.16

An investigation is made of the supersonic flow around a spherical blunt body on the basis of equa-
tions obtained from the Navier—Stokes equations without taking into account terms of order O (R‘1 Z’), (0] (R'i),
etc., throughout the shock layer (R is the Reynolds number). The equations used are applicable for arbi-
trary values of the ratio of densities at the shock wave, which is taken here to be a surface of discontinuity.
A comparison of the results of our calculations with known solutions of the complete Navier—Stokes equa-
tions, with results obtained from the theory of nonviscous flow and also from boundary layer theory, and
also with experimental data show that our formulation of the problem is valid for Reynolds numbers R, > 102,
In the range 1022 R, =10° we investigate the change of aerodynamic characteristics of the cooled blunt body
and the parameters of the shock layer as a function of the Reynolds number and the temperature factor for
moderate supersonic speeds of the incident flow,

1. In estimating the terms of the complete Navier—Stokes equations it is assumed that the thickness
of the region adjacent to a wall, a region in which the viscosity and thermal conductivity of the gas play a
substantial role, and also the magnitude of the velocity component normal to the body surface in this region
are of order O (R‘m). If we take into account only terms of order O (1) in some part of the shock layer,
we obtain a system of equations which includes all the terms of the equations of nonviscous flow and also
those of the boundary layer flow. In spherical coordinates, for the axially symmetric nonstationary case,
this system of equations has the form
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Here the velocity components u, v (along the r and 9 axes, respectively) are referred to the maximum
velocity V, the density p is referred to the density in the incident flow p,,, the pressure p to p,,V? the tem-
perature T t0 Mo VZ/R* (my is the molecular weight of the gas in the incident flow, and R* is the universal
gas constant), the specific enthalpy h is referred to 1/ZVZ, the linear dimensions are referred to the blunt-
ness radius a, the time t to a/V, the coefficients of viscosity u and thermal conductivity A are referred to

corresponding values p* and A* calculated at the temperature T=m,VZ/R*, The Reynolds and Prandtl
numbers are defined as follows:
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We solve Egs. (1.1) in a region bounded by the surface of the body, the axis of symmetry 8 =0, the
shock wave, which is taken to be a discontinuity surface, andsome ray6*> 0. The boundary conditions of
the problem are formulated as follows. On the body surface we pose the usual conditions of nonpentrability
and nonslippage for the velocity components and the temperature condition T =Ty, =const, on the 0 =0 axis
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we have conditions of symmetry, and at the shock wave we use the nonstationary Rankine—Hugoniot rela~-
tions [1]. No additional conditions are posed on the boundary ray 8 =0 * since it was shown in [2] that for
6 * sufficiently large the reverse flow effect on the flow in the region considered is small. In most of our
calculations we used 6 * =90°

2. For the solution of the problem it is convenient to introduce new independent spatial variablesx, y:

_In¢ 4 Hy _ L r—G® (2.1)
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where r=G(8) and r=F(8, t) are the equations of the body contour and the shock wave, In the variables
(2.1) the flow region considered becomes rectangular and the curves £ =const are concentrated at the body
surface as the parameter H increases. In matrix form the initial system of Eqgs. (1.1) may be described
as follows:
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where X={ Tvup}' is a column vector of the unknown quantities and the rectangular matrices E, A, B,C, D,
e, b, ¢, d are defined in terms of the coefficients of the system of Egs. (1.1).

In the region 0=x=1, 0=y = 6%, t=0 we introduce a computational mesh with the nodal coordinates

=1k (A= AIM, i=0,1,..., M), Yi=Jl g=e*/N, j=0,1,... N 2.3)
" =nAt (=012,..)

The system of differential equations (2.2) is replaced by a system of difference equations with the
use of an implicit (with weight «) scheme having second order approximation in the spatial variables, The
coefficients of the system are described at a point "suspended" between the layers n and n+1, The bound-
ary-value problem for the resulting nonlinear system of difference equations is solved by the method of
successive approximations, similar to that given in [1] for calculating nonviscous gas flows. To determine
the vector of the unknown functions at the m+1)-th layer in (s +1) iterations from the known data at the n-th
layer, we consider the coefficients of the system and also the derivatives with respect to y as known from
the previous s iterations.

Then the complete system of difference equations breaks up into independent subsystems of the form
(2.4) and (2.5) for the unknowns on the separate rays y =yj:
P?+(as)xﬁ+l(s+1) + R?+(HS)X;I+(3+1) 4 Q?+(15)X2—i(s+l) + (I)’;H-(ots) =0 (2- 4)
(f=1,2...,M—1)
(2.5)
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We solve the system of Egs. (2.4) and (2.5) along each ray by the screw method, Uéing the boundary
conditions on the body for the temperature and the velocity component v, and also both equations of the first
order of the Eqs. (2.5) for i =1, we obtain

Xo4+ X, LT, =0 {2.6)
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For alli=1, 2,... , M we find the relation

where
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For this we eliminate, with the help of Eq. (2.7), the vector Xj—; from the difference equations of the
second order (2.4). Adjoining to the resulting system the first order Eqgs. (2.5), we find recursion formulas
for determining the coefficients £;, II; :

e |
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We write the as yet unused boundary condition on the body for the normal component u of the velocity
in the form

(l)oXo + Ty = 0 ((00 = {0010}, Ny = O) (2.9)
and we seek a relation of the form (2.9) for all i =0,1,..., M. Using Eq. (2.7), we readily obtain
0541 = By, Ty = B (o010 — 5] (2.10)

where $ is a normalizing factor for which a quantity inverse to the length of the row w;@; 4, is chosen, Per~
forming a right rotation, i.e., calculating all the coefficients £;, Il ;, with the aid of Eqs. (2.9) and (2.10) we
obtain on the shock wave the relation

@y Xy + s1pp = 0 (2.11)

Adjoining Eq. (2,11) to the nonstationary Rankine —Hugoniot relations and solving the resulting non-~
linear system of five equations, we determine the vector of the unknown functions on the shock wave and
the quantity Fy, in terms of which the shock wave departure may be determined. The inverse rotation is
effected with the aid of the relation (2.7) in which the third equation is replaced by the rotational relation

0X; 1, = 0 2.12)

On the axis of symmetry (7 =0), after elimination of the singularity, the system of difference equa-
tions for X={ Tup}' is solved in an analogous manner, Derivatives with respect to y are calculated at the
final ray (v = 6*) with the aid of nonsymmetric second order difference approximations,

The solution of the problem is regarded as having been attained if, beginning with some time instant,
the relative changes in all the functions at an arbitrary node of the mesh decrease for two time layers and
if the maximum of these changes proves to be less than At - 103,

3. Calculations were made for the case of flow around a sphere by a perfect gas with ratio of specific
heat capacities vy =1.4 for Reynolds numbers 1022 R, =10°, The value of the temperature factor k=Tw/ Ty
(T, is the retardation temperature) was varied over the range from 0,14 to 0.7, It was assumed that the
coefficient of dynamic viscosity depends on the temperature according to a power law with exponent w, In
the majority of the calculations we used w =0.5 and a Prandtl number P, =0.7. For ease of comparison of
the results obtained with existing data in the literature, we used, besides R« = Veopwa/ lo, also the quantities
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w
where the subscript s is used for values of the gas parameters on the axis of symmetry directly back of
the shock wave,

The results discussed below (M =6) were obtained for the following parameter values of the calcula~
tional mesh: M=25, N=10, H=100, Control calculations showed, moreover, that an accuracy to within 1%
may be ensured over the whole field of the gas-dynamic functions, the shock wave departure, the thermal
flow, and the coefficient of friction,

Figure 1 shows how the shock wave departure €, varies on the axis of symmetry as a function of the
Reynolds number R.. Curves 1, 2, 3, and 4 correspond, respectively, to values of the temperature factor
k=0,7, 0.35, 0.21, 0,14, The dashed curve corresponds to the value of €; obtained from the calculation of a
nonviscous gas flow around a sphere (M =25, N=10, and a uniform step in the coordinate £). It is evident
that the temperature factor determines to a significant degree not only the size of the shock wave departure
but also the nature of the dependence of €, on the Reynolds number.

In Figs, 2 and 3 we present profiles of the gas-dynamic functions in the shock layer at the # =45° ray
for k=0,35 for Re =355 (curve 1) and 71,000 (curve 2). The dashed curves are the calculated results for
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nonviscous flow. At the shock wave (£ =1) the values of the gas~dynamic functions donot differ significantly.
This indicates that the shock wave shape varies weakly with a change in the Reynolds number. The influ-
ence of viscosity and thermal conductivity of the gas becomes apparent in the region at the wall, the size
of which decreases with an increase in the Reynolds number., For large 6, with an increase in R,, the be-
havior of the temperature and the density in the region at the wall becomes substantially nonmonotonic,

Figures 4 and 5 show the profiles of T and p in this region for 6 =90° (k=0.35) for various values of
Ro: curves 1, 2, and 3 are for R, =3550; 35,500; and 71,000, respectively. In these calculations we as-
sumed that 6* =100°, The dashed curves represent T and p profiles for nonviscous flow while the dash~dot
curves give the results for the boundary layer calculation for Re =71,000, The boundary layer calcula-
tion was made with the aid of a two-layer implicit six~point scheme [3], using at the cuter edge of the bound-
ary layer data obtained from solving the nonviscous flow problem, As can be seen from Figs. 4 and 5, for
large Reynolds numbers maximum temperatures and minimum densities occur near the body surface, he-
coming more pronounced and being displaced towards the body as R, increases, We note that for a non-
viscous gas the temperature and the density close to the surface vary monotonically (dashed curves). When
£5 0.1 the T and p profiles for R, = 35,500 and 71,000 are practically coincident with the results of the non~
viscous flow calculations, For these values of the coordinate &, outflow takes place on the asymptote of
the boundary layer solution; however, by virtue of the boundary conditions posed, the agymptotic values of

715



mf’}eﬁ_, /
7
1 === 7 ' 1J hf /
o 4
25 —d— Uiz 74
4 4. 29 lg 4
7 I K £ 27 24 a4 74
Fig. 7 - Fig. 8
10 5 i 27 7{’&
gy, W 1294 ’ “ N
e 10 of
(%
] 4 12 as
. 1
24 é a4 N j
" & \\‘\
, \ =
Vi 7 A 72 9 4 il g P 7 [
Fig. 9 ' Fig. 10

temperature and density for £¢5 0.1 differ from the true values of T and p, obtained from a calculation of
the viscous shock layer. The boundary layer solution yields nonmonotonic temperature and density profiles
near the surface as does also the calculation of the viscous shock layer for large Reynolds numbers.

We now proceed to a discussion of the results relating to heat transfer and friction at the body sur-
face, The dimensionless heat flow q and friction coefficient C ' are defined by the formulas

1 Ty 2 iEAY 3.2
1= 57 (" W)w v b=, (u gr—)w (3.2)
where the prime indicates dimensional quantities. Figure 6, for w = 3/4, P, =0.72, k=0,527, gives a com-~

parison of our results (solid curves) with the results obtained in [2] from solving the complete Navier—
Stokes equations (dashed curves) and also with the results of the boundary layer calculation (dash-dot curves).

We remark that in [2] no shock wave was assumed at the outer boundary of the flow region and the sur-
face was located entirely in the unperturbed incident flow. Curves 1 correspond to Re =90, curves 2 to
R, =200, It is interesting to note that for #< 60° the results of our paper as well as the results given in
[2] differ insignificantly from the results calculated according to the classical boundary layer theory, where-
in the data used at its outer edge are obtained from the nonviscous flow calculation on the body surface.
For large 0 the divergence becomes large, It also increases with a decrease in the Reynolds number,

Figure 7 shows the dependence of the quantity q,VRe on the Reynolds number (g, is the dimensionless
heat flow at the critical point). The numbers 1, 2, 3, and 4 refer to the results for k=0.14, 0.21, 0.35, and
0.7. The dashed curves show the corresponding values obtained from solving the boundary layer equations.
It is evident that with an increase in the surface temperature the difference of q;vVRe from its boundary
layer value occurs for large Reynolds numbers.

For small R, for all values of the temperature factor, the dependence obtained corresponds to the
known tendency for an increase in g, with a decrease in R,,. In addition, for k=0,14 the quantity qO\fR—;
stays constantly above its boundary layer value, and for other k it passes through a minimum, its value there
being the more below the boundary layer value the larger the k value. A comparison of the heat flow at the
critical point with experimental data is shown in Fig. 8, Here q,* is the heat flow referred to that calcu~
lated from the Fay-Riddell [4] formula under the assumption that

L =1, K= (pwu‘w /psgs)u.l =1
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LN where L is the Lewis number. The solid curve presents results of our
\° 9 paper (k=0.35), the dashed curve the results obtained from the formula

o N o » gt =1+0.52/ VR, (3.3)

° proposed in [5] on the basis of a treatment of the experimental data

M, =6, y=1.4,k=0,33, 20=Rg=500). The divergence of the results

) g, | is obtained within the experimental error limits (7%) indicated by the

2 J 4 7 authors of [5]. The shaded region covers the experimental data given
Fig. 11 in [6]. For large Reynolds numbers the difference of gy* from unity is

explained partly by the fact that in using the Fay—Riddell formula, it

was assumed that K=1, whereas for the conditions considered K=1,064,

245

Figure 9 shows the distribution over the spherical surface of the reduced heat flow and of the quantity
C A/ Ry for k=0.35. Curves 1, 2, and 3 correspond to R,, values of 177,5, 3550, and 71,000, respectively;
curves 17, 2', 3', and 4' are for Rs values of 100, 355, 3550, and 71,000, respectively. It is evident that
the distribution of ¢/q, depends on the Reynolds number, tending towards its boundary layer value (dashed
curve) as the Reynolds number increases. The substantial difference of the curves q/q,(6) with respect to
the Reynolds number holds for large 6, where the heat flow is small, Therefore in the experiments {5],
the data of which, with its attendant scatter, is shown by the circled points, no dependence of the distribu-
tion of the reduced heat flow on the Reynolds number was observed. The distribution of the friction coef-
ficient also proves to be dependent on R,,, wherein the maximum value of C Je\/'R_oo changes nonmonotonically
with a change in R,,. The boundary layer curve for C v R, coincides with the curve 4!, The calculations
also showed that for all Reynolds numbers the distributions over the spherical surface of the reduced heat
flow and the friction coefficient also depend on the temperature factor.

The distribution of the pressure, referred to the pressure at the critical point, is shown in Fig. 10.
Curves 1 and 2 correspond to R, values of 177.5 and 35,500, respectively, for k=0.,7; curve 3 is for Ry, =
177.5 for k=0.14. The dashed curve was drawn on the basis of the results obtained from nonviscous flow
calculations, It is evident that the viscosity and thermal conductivity of the gas lead to an increase in the
reduced pressure. As R_ increases, the curves pw/pwo(a) approach the pressure distribution for a non-
viscous gas, For a fixed value of the Reynolds number (curves 1 and 3), the reduced pressure distribution
differs less from the nonviscous gas case the lower the surface temperature., Figure 11 shows, for k=0.35,
the dependence of the resistance coefficient of the sphere on the Reynolds number R,,. The dimensionless
resistance coefficient Cg* is defined as the ratio of the quantity

2= M2

Cy=14 W2 S (P cos 0 + l/gcf sin 6) sin 6 d6 (3.4)

0
to the value of the resistance coefficient for free-molecular flow for the case of a purely diffuse reflection
[7]1. The circled points correspond to the experimental data given in [6].
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