
S U P E R S O N I C  V I S C O U S  GAS F L O W  A R O U N D  

A C O O L E D  S P H E R I C A L  B L U N T  B O D Y  
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An invest igat ion is made of the supersonic  flow around a spher ica l  blunt body on the bas i s  of equa-  
tions obtained f r o m  the N a v i e r - S t o k e s  equations without taking into account t e r m s  of o r d e r  O (R-l/2), O (R-l), 
etc. ,  throughout the shock l aye r  (R is the Reynolds number) .  The equations used a re  applicable fo r  a r b i -  
t r a r y  values of the ra t io  of densi t ies  at the shock wave, which is taken here  to be a su r face  of discontinuity.  
A compar i son  of the resu l t s  of our calculat ions with known solutions of the comple te  N a v i e r - S t o k e s  equa-  
tions, with resu l t s  obtained f r o m  the theory  of nonviscous flow and also f r o m  boundary l aye r  theory,  and 
also with exper imenta l  data show that our formulat ion of the p rob lem is valid for  Reynolds numbers  R~ ) 102. 
In the range 102~ Roo ---105 we invest igate  the change of aerodynamic  c h a r a c t e r i s t i c s  of the cooled bluntbody 
and the p a r a m e t e r s  of the shock l aye r  as a function of the Reynolds number  and the t e m p e r a t u r e  fac tor  for  
modera te  supersonic  speeds of the incident flow. 

1. In es t imat ing  the t e r m s  of the complete  N a v i e r - S t o k e s  equations it is  a s sumed  that the thickness  
of the region adjacent to a wall, a region in which the v iscos i ty  and t he rma l  conductivity of the gas play a 
substant ia l  role ,  and also the magnitude of the veloci ty component  normal  to the body sur face  in this region 
are  of o rde r  O (R-l/2). If we take into account only t e r m s  of o rde r  O (1) in some pa r t  of the shock layer ,  
we obtain a s y s t e m  of equations which includes all the t e r m s  of the equations of nonviscous flow and also 
those of the boundary l a y e r  flow. In spher ica l  coordinates ,  for  the axial ly s y m m e t r i c  nonsta t ionary case ,  
this s y s t e m  of equations has the f o r m  
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O----( + u -~-7 - r O0 + r -~-r + ~-~ + 2u + v e tg  O = 0  
h = h (p,  T), P = P (O, 7) ,  ~ = ~ (~),  ~ = ~ (T) 

Here the velocity eomponents u, v (along the r and 0 axes,  respect ive ly)  a re  r e f e r r e d  to the max imu m 
veloci ty V, the dens i typ  is r e f e r r e d  to the density in the incident flow P~o, the p r e s s u r e  p to p~oV 2, the t e m -  
pe ra tu re  T to mooV2/R * (moo is the molecu la r  weight of the gas in the incident flow, and R* is the universa l  
gas constant),  the specif ic  enthalpy h is r e f e r r e d  to 1/2V2, the l inear  dimensions a re  r e f e r r e d  to the blunt-  
ness  radius  a,  the t i m e  t to a / V ,  the coeff icients  of v iscos i ty  # and t he rma l  conductivity X a re  r e f e r r e d  to 
corresponding values # * and X* calculated at the t e m p e r a t u r e  T =mooV2/R *, The Reynolds and Prandtl  
numbers  a re  defined as follows: 

1:l = Vp~a ~*R* 
p ~  ' P = ~*m 

We solve Eqs. (1.1) in a region bounded by the sur face  of the body, the axis of s y m m e t r y  0 = 0, the 
shock wave, which is taken to be a discontinuity sur face ,  and some ray0*  > O. The boundary conditions of 
the p r o b l e m  a re  fo rmula ted  as follows. On the body sur face  we pose the usual conditions of nonpentrabil i ty 
and nonslippage for  the velocity components  and the t e m p e r a t u r e  condition T =T w = const,  on the 0 = 0 axis 
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we have  cond i t i ons  of s y m m e t r y ,  and  at  the  s h o c k  wave  we use  the  n o n s t a t i o n a r y  R a n k i n e - H u g o n i o t  r e l a -  
t ions  [1]. No add i t i ona l  cond i t i ons  a r e  p o s e d  on the  b o u n d a r y  r a y  0 = 0 * s i n c e  i t  was  shown in [2] tha t  f o r  
0 * su f f i c i en t l y  l a r g e  the  r e v e r s e  f low e f fec t  on the f low in the  r e g i o n  c o n s i d e r e d  i s  s m a l l .  In  m o s t  of o u r  

c a l c u l a t i o n s  we u s e d  0 * = 90 ~ 

2. F o r  the  s o l u t i o n  of  the  p r o b l e m  i t  i s  conven ien t  to  i n t r o d u c e  new independen t  s p a t i a l  v a r i a b l e s x ,  y: 

x (~ = f (~, t-y----~ (0) = ]-~(-4---~7~) ' y = 0  r - C ( 0 )  , ~ > 0 )  (2.1) In (1 + H~,) 

w h e r e  r = G ( 0 )  and r = F ( 0 ,  t) a r e  the  equa t ions  of the  body  c o n t o u r  and the  shock  wave .  In the  v a r i a b l e s  
(2.1) the  f low r e g i o n  c o n s i d e r e d  b e c o m e s  r e c t a n g u l a r  and  the  c u r v e s  } = c o n s t  a r e  c o n c e n t r a t e d  at  the body 
s u r f a c e  a s  the  p a r a m e t e r  H i n c r e a s e s .  In m a t r i x  f o r m  the i n i t i a l  s y s t e m  of Eqs .  (1.1) m a y  be  d e s c r i b e d  
as  fo l l ows :  

0x - ~  B 0X oX 
E ~ - ~ A - g ~ z 2  + oz  -~C--~-y + D : O  

0x b ox  oX (2.2) e-~/-  ~- - ~ -  -i- c--~-y -t- d = 0 

w h e r e  X = { T v u p }  ' i s  a c o l u m n  v e c t o r  of the  unknown q u a n t i t i e s  and  the r e c t a n g u l a r  m a t r i c e s  E, A, B, C, D, 
e,  b,  e ,  d a r e  de f ined  in  t e r m s  of the  c o e f f i c i e n t s  of the  s y s t e m  of Eqs .  (1.1). 

In the  r e g i o n  0 -< x -  1, 0 - y -  0" ,  t->0 we i n t r o d u c e  a c o m p u t a t i o n a l  m e s h  with  the  noda l  c o o r d i n a t e s  

x ~ = i h  ( h = ~ / M ,  i = 0 ,  t . . . . .  M), y j = ] l  ( l = O * / N ,  S'=0,1 . . . . .  N) (2.3) 
t ~ = n A t  (n = O, 't, 2 . . . .  ) 

The s y s t e m  of d i f f e r e n t i a l  equa t ions  (2.2) i s  r e p l a c e d  by  a s y s t e m  of d i f f e r e n c e  equa t i ons  wi th  the  
u se  of an i m p l i c i t  (with weight  (~) s c h e m e  hav ing  s e c o n d  o r d e r  a p p r o x i m a t i o n  in the  s p a t i a l  v a r i a b l e s .  The 
c o e f f i c i e n t s  of the  s y s t e m  a r e  d e s c r i b e d  at  a po in t  " s u s p e n d e d "  b e t w e e n  the l a y e r s  n and n +1.  The  bound-  
a r y - v a l u e  p r o b l e m  f o r  the  r e s u l t i n g  n o n l i n e a r  s y s t e m  of d i f f e r e n c e  equa t i ons  i s  s o l v e d  by  the  m e t h o d  of 
s u c c e s s i v e  a p p r o x i m a t i o n s ,  s i m i l a r  to  tha t  g i v e n  in  [1] f o r  c a l c u l a t i n g  n o n v i s c o u s  g a s  f lows .  To d e t e r m i n e  
the  v e c t o r  of  the  unknown func t ions  at  the  (n + 1 ) - th  l a y e r  in  (s + 1) i t e r a t i o n s  f r o m  the  known da t a  a t  the  n - t h  
l a y e r ,  we c o n s i d e r  the  c o e f f i c i e n t s  of  the  s y s t e m  and a l s o  the  d e r i v a t i v e s  wi th  r e s p e c t  to y a s  known f r o m  
the p r e v i o u s  s i t e r a t i o n s .  

Then  the  c o m p l e t e  s y s t e m  of d i f f e r e n c e  equa t i ons  b r e a k s  up in to  i ndependen t  s u b s y s t e m s  of the  f o r m  
(2.4) and  (2.5) f o r  the unknowns on the  s e p a r a t e  r a y s  y = y j :  

pn+(as)xn+(s+l) l~n+(~s)~i~ n+(s+l) 2-- g'~n+(~s)~krn+(s4-1) i+l + --~ .-i . .<i ~ - i  ~ (I)~ +(~) = 0 (2.4) 
( i = 1 , 2  . . . . .  U - - ~ )  

~(~)v~+@+~) __ ,~+(~)v~+(s+i) ~+(~) (2.5) 
r i - , I ,  ~ i  ~c- qi-V~ ~i-1 ~- ~i- 1, = 0 ( i= t ,2 , . . . ,  M) 

w h e r e  

P ~ = •  R ~ = 4 ( E - - •  Q ~ = •  

q)~ ' - ~  ~ + ' - ~  ~ , ( cOX ) = a PiXi+1 + [-- 4E --? (I - -  a) R~] Xi ~ ~- ~ QiXi_, -r  4At } ~ -? D i 

qD~_,t~ = -~- [ - -  e ~- (~ - -  a) r~_,/~] X~ n -~ + [ - -  e ~- (i - -  a) qi-v,] X~-I -~ 2At c - ~ y  d -,,'~ 

[we o m i t  the  s u p e r s c r i p t  n + (as )  f o r  b r e v i t y ] .  

We s o l v e  the s y s t e m  of  Eqs .  (2.4) and  (2.5) a long  each  r a y  by  the  s c r e w  me thod .  U s i n g  the  b o u n d a r y  
cond i t i ons  on the  body  f o r  the  t e m p e r a t u r e  and  the v e l o c i t y  componen t  v, and a l s o  both equa t i ons  of the  f i r s t  
o r d e r  of the  Eqs .  (2.5) f o r  i = 1, we ob ta in  

w h e r e  

X0 -t- 111X1 -t- II1 = 0 (2.0) 

l r(o/ I I  1 = 
~1 q' i ,  r ' i ,  ' q'l~ ~' I ,  

F o r  a l l  i = 1, 2 . . . .  , M we f ind  the  r e l a t i o n  
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Xi l  + f~iXi + Hi ~ 0 (2.7) 

For this we eliminate, with the help of Eq, (2.7), the vector  Xi_ 1 f rom the difference equations of the 
second o rde r  (2.4). Adjoining to the result ing sys tem the f i rs t  o rder  Eqs. (2.5), we find recurs ion  formulas  
for determining the coefficients fib Hi : 

We write the as yet  unused boundary condition on the body for the normal  component u of the velocity 
in the fo rm 

o)0X0 + no = 0 (r = {0010}, n0 = O) (2.9) 

and we seek a relat ion of the form (2.9) for  all i =0,1 . . . . .  M. Using Eq. (2.7), we readi ly obtain 

0 ) i + l  : ~O)i~i§ ~i+l : ~ (e~Hi+l -- nl) (2.10) 

where/3 is a normalizing factor  for which a quantity inverse to the length of the row coi~2i+ 1 is chosen. Pe r -  
forming a right rotation, i.e., calculating all the coefficients fi b II i, with the aid of Eqs. (2.9~ and (2.10) we 
obtain on the shock wave the relat ion 

r + nM = 0 (2.11) 

Adjoining Eq. (2.11) to the nonstat ionary Rankine-Hugoniot  relations and solving the result ing non- 
l inear  sys tem of five equations, we determine the vector  of the unknown functions on the shock wave and 
the quantity Ft', in t e rms  of which the shock wave departure may be determined. The inverse rotation is 
effected with the aid of the relation (2.7) in which the third equation is replaced by the rotational relation 

~eiX~ + ~i = 0 (2.12) 

On the axis of symmet ry  (y = 0), af ter  elimination of the singularity, the sys tem of difference equa- 
tions for  X={Tup} '  is solved in an analogous manner.  Derivatives with respect  to y are  calculated at the 
final ray  (y = 0") with the aid of nonsymmetr ic  second order  difference approximations.  

The solution of the problem is regarded  as having been attained if, beginning with some time instant, 
the relative changes in all the functions at an a rb i t r a ry  node of the mesh decrease  for two t ime layers  and 
if the maximum of these changes proves  to be less  than At .  10 -3. 

3. Calculations were made for  the case of flow around a sphere by a perfect  gas with rat io of specific 
heat capacit ies Y = 1.4 for  Reynolds numbers 102~ ~ - <  105. The value of the tempera ture  fac tor  k = Tw/T0 
(T O is the re tardat ion temperature)  was var ied over the range f rom 0.14 to 0.7. It was assumed that the 
coefficient of dynamic viscosity depends on the tempera ture  according to a power law with exponent c0. In 
the major i ty  of the calculations we used r =0.5 and a Prandtl  number Poo = 0.7. For  ease of compar ison of 
the resul ts  obtained with existing data in the l i terature,  we used, besides R oo =V~op~a/#oo, also the quantities 

[ I -~ 
R~ V pa Roo t +  2(~-1)  tM~o ~ I)(t+'t 'Moo ~) 

~s (I" -T- 1)2 ~ !oo~  " - -  

R* 2~ oj___2_ ~ = 2Bo~ (Too/T~)" (3.1) 

where the subscr ipt  s is used for  values of the gas pa ramete r s  on the axis of symmet ry  directly back of 
the shock wave. 

The resul ts  discussed below (Moo = 6) were obtained for the following pa rame te r  values of the calcula-  
tional mesh:  M=25, N= 10, H= 100. Control calculations showed, moreover ,  that an accuracy  to within 1% 
may be ensured over the whole field of  the gas-dynamic  functions, the shock wave departure,  the thermal  
flow, and the coefficient of friction. 

Figure 1 shows how the shock wave departure e 0 var ies  on the axis of symmet ry  as a function of the 
Reynolds number  R~o. Curves 1, 2, 3, and 4 correspond,  respectively,  to values of the tempera ture  factor  
k = 0.7, 0.35, 0.21, 0.14. The dashed curve corresponds  to the value of e 0 obtained f rom the calculation of a 
nonviscous gas flow around a sphere (M=25, N= 10, and a uniform step in the coordinate ~). It is evident 
that the tempera ture  factor  determines  to a significant degree not only the size of the shock wave departure 
but also the nature of the dependence of e0 on the Reynolds number.  

In Figs. 2 and 3 we present  profi les  of the gas-dynamic  functions in the shock layer  at the 0 = 45 ~ ray 
for k=0.35 for  R~o =355 (curve 1) and 71,000 (curve 2). The dashed curves  are  the calculated resul ts  for  
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nonviscous flow. At the shock wave (~ = 1) the values of the gas-dynamic  functions donot differ significantly. 
This indicates that the shock wave shape var ies  weakly with a change in the Reynolds number.  The influ- 
ence of viscosi ty  and thermal  conductivity of the gas becomes apparent  in the region at the wall, the size 
of which decreases  with an increase  in the Reynolds number .  For  large  e, with an increase  in R~ the be-  
havior of the t empera tu re  and the density in the region at the wall becomes substantially nonmonotonic. 

Figures  4 and 5 show the profi les of T and p in this region for  8 = 90 ~ (k = 0.35) for  various values of 
P~ :  curves  1, 2, and 3 are  for  R~o = 3550; 35,500; and 71,000, respect ively.  In these calculations we as -  
sumed that 6" = 100% The dashed curves  represen t  T and p profiles for nonviscous flow while the dash-dot  
curves  give the resul ts  for  the boundary l ayer  calculation for R~ = 71,000. The boundary layer  calcula-  
tion was made with the aid of a two- layer  implicit  six-point scheme [3], using at the outer edge of the bound- 
ary  layer  data obtained f rom solving the nonviscous flow problem. As can be seen f rom Figs.  4 and 5, for 
large  Reynolds numbers  maximum tempera tu res  and minimum densities occur  near  the body surface,  be-  
coming more  pronounced and being displaced towards the body as R~o increases .  We note that for a non- 
viscous gas the t empera tu re  and the density close to the surface vary monotonically (dashed curves).  When 

~ 0.1 the T and p profi les  for  R~ = 35,500 and 71,000 are  pract ical ly  coincident with the resul ts  of the non- 
viscous flow calculat ions.  For  these values of the coordinate ~, outflow takes place on the asymptote of 
the boundary l ayer  solution; however, by virtue of the boundary conditions posed, the asymptotic  values of 
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t e m p e r a t u r e  and density for  ~ ~ 0.1 differ  f r o m  the t rue  values of T and p, obtained f r o m  a calculat ion of 
the viscous shock l aye r .  The boundary l aye r  solution yields  nonmonotonic t e m p e r a t u r e  and density prof i les  
nea r  the sur face  as  does also the calculat ion of the viscous  shock l aye r  for  l a rge  Reynolds number s .  

We nowproceed  to a d iscuss ion of the resu l t s  re la t ing  to heat t r a n s f e r  and f r ic t ion  at the body s u r -  
face .  The d imens ionless  heat flow q and f r ic t ion  coefficient  C f  a r e  defined by the fo rmulas  

where  the p r i m e  indicates  dimensional  quant i t ies .  Figure  6, for  co = 3~, p~  = 0.72, k = 0.527, gives a com-  
pa r i son  of our  resu l t s  (solid eurves)  with the resu l t s  obtained in [2] f r o m  solving the eomplete  N a v i e r -  
Stokes equations (dashed curves)  and also with the resu l t s  of the b o u n d a r y l a y e r  calculat ion (dash-dot curves) .  

We r e m a r k  that in [2] no shock wave was a s sumed  at the outer  boundary of the flow region and the s u r -  
face was located ent i re ly  in the unper turbed  incident flow. Curves  1 co r respond  to tl~ = 90, curves  2 to 
R~ =200. It is in teres t ing to note that for  0~ 60 ~ the resu l t s  of our pape r  as well as  the r e su l t s  given in 
[2] differ  insignificantly f r o m  the r e su l t s  calculated aeeording to the c l a s s i ca l  boundary l a y e r  theory,  where -  
in the data used  at its Outer edge a r e  obtained f r o m  the nonviscous flow calculat ion on the body sur face .  
For  la rge  0 the divergence becomes  l a rge .  It a lso  i n e r e a s e s  with a dec rease  in the Reynolds number .  

Figure 7 shows the dependence of the quantity q0 R-gg-s on the Reynolds number  (% is the d imensionless  
heat flow at the cr i t ica l  point). The numbers  1, 2, 3, and 4 r e f e r  to the resu l t s  for  k=0 .14 ,  0.21, 0~ and 
0.7. The dashed curves  show the cor responding  values obtained f r o m  solving the boundary l aye r  equations.  
It is evident that with an inc rease  in the sur face  t e m p e r a t u r e  the difference of q0 R'g-g-s f r o m  its boundary 
l a y e r  value occurs  for  l a rge  Reynolds numbers .  

For  smal l  R~,  for  all  values of the t e m p e r a t u r e  factor ,  the dependence obtained eo r re sponds  to the 
known tendency for  an inc rease  in q0 with a dec rea se  in R~ .  In addition, for  k--0 .14 the quantity q0vr-'i~ - 
s tays  constantly above its boundary l a y e r  value, and for  other  k it p a s s e s  through a minimum,  its value the re  
being the m o r e  belowthe boundary l a y e r  value the l a r g e r  the k value.  A compar i son  of the heat flow at the 
c r i t i ca l  point, with exper imenta l  data is shown in Fig. 8. Here  %* is the heat flow r e f e r r e d  to that ca lcu-  
la ted f r o m  the Fay-Riddel l  [4] fo rmula  under the assumpt ion  that 

L = 1,  K = ( p ~ . ~  / Os,a~)o.1 = 1 
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where L is the Lewis number.  The solid curve presents  resul ts  of our  
paper  (k = 0.35), the dashed curve the resul ts  obtained f rom the formula  

q0* = t -}- 0.52 / ]/-R-~ (3.3) 

proposed in [5] on the basis  of a t reatment  of the experimental  data 
(M ~ = 6, 7 = 1.4, k = 0.33, 20-< R s -< 500). The divergence of the resul ts  
is obtained within the experimental  e r r o r  l imits  (7%) indicated by the 
authors of [5]. The shaded region covers  the experimental  data given 
in [6]. For  large Reynolds numbers  the difference of q0* f rom unity is 
explained par t ly  by the fact that in using the F a y - R i d d e l l  formula,  it 
was assumed that K = 1, whereas for  the conditions considered K = 1.064. 

Figure 9 shows the distribution over  the spherical  surface of the reduced heat flow and of the quantity 
C#r--~ for  k=0 .35 .  Curves 1, 2, and 3 correspond to Roo values of 177.5, 3550, and 71,000, respectively;  
curves-- 1', 2',  3', and 4' are  for  1~  values of 100, 355, 3550, and 71,000, respect ively.  It is evident that 
the distribution of q/q0 depends on the Reynolds number,  tending towards its boundary layer  value (dashed 
curve) as the Reynolds number  increases .  The substantial difference of the curves  q/q0(0) with respec t  to 
the Reynolds number  holds for large  0, where the heat flow is small .  Therefore  in the experiments  [5], 
the data of which, with its attendant scat ter ,  is shown by the c i rc led  points, no dependence of the distr ibu- 
tion of the reduced heat flow on the Reynolds number  was observed.  The distribution of the fr ict ion coef-  
ficient also proves  to be dependent on Roo, wherein the maximum value of Cf  ~ changes nonmonotonically 
with a change in R~.  The boundary l ayer  curve for  C f ~  coincides with the curve 4' .  The calculations 
also showed that for  all Reynolds numbers  the distributions over the spherical  surface of the reduced heat 
flow and the fr ic t ion coefficient also depend on the tempera ture  factor .  

The distr ibution of the p ressure ,  r e f e r r ed  to the p re s su re  at the cr i t ical  point, is shown in Fig. 10. 
Curves 1 and 2 cor respond  to Roo values of 177.5 and 35,500, respectively,  for k=0 .7 ;  curve 3 is for  R~ = 
177.5 for  k = 0.14. The dashed curve was drawn on the basis  of the resul ts  obtained f rom nonviscous flow 
calculations.  It is evident that the viscosi ty and thermal  conductivity of the gas lead to an increase  in the 
reduced p r e s s u r e .  As R increases ,  the curves  pw/Pw0(0) approach the p re s su re  distribution for  a non- 
viscous gas .  For  a fixed value of the Reynolds number  (curves 1 and 3), the reduced p re s su re  distribution 
differs less  f rom the nonviscous gas case the lower the surface tempera ture .  Figure 11 shows, for  k=0.35,  
the dependence of the res i s tance  coefficient of the sphere on the Reynolds number  R w. The dimensionless 
res i s tance  coefficient Cd* is defined as the rat io of the quan t i ty  

0* 

2 (7 -- t) -1 + M~ I (p~ cos 0 + 1/oC] sin 0) sin 0 dO (3.4) Ca = 4 
M 2 

o 

to the value of the res is tance  coefficient for  f r ee -mo lecu l a r  flow for  the case of a purely diffuse reflection 
[7]. The c i rc led  points cor respond to the experimental  data given in [6]. 

The authors thank Yu. P. Lun'kin for  useful discussions of their  work. 
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